
tions of free hydrocarbons (oil), bitumens, argillaceous particles, bound hydrocarbons (resi- 
dual oil saturation); Vi, volumes of separate sections; %', %sil, %cal, %d, %", %, thermal 
conductivities of mixtures of separate components and the effective thermal conductivy of 
the entire Bazhenov suite, W/(m.K); mcr, volume concentration of the cracks; and c and M are 
parameters which depend on mcr. 
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ANALYSIS OF THE CONJUGATE PROBLEM OF EVAPORATION FROM THE WALLS 

OF A LONG CHANNEL 

V. I. Nosik UDC 536.423.1 

The conditions under which the nonequilibrium nature of the evaporation and re- 
distribution of heat in the solid walls must be taken into account in order to 
calculate the heat and mass transfer in a long flat channel are determined. 

The problems of evaporation from the walls of a long channel are encountered in the con- 
struction of models of physicochemical processes in porous media, as well as in the theory of 
heat pipes and dryers. There are two approaches to the solution of problems of this type. 
In the "energy" approach [i, 2] the intensity of the evaporation is determined based on the 
magnitudes of the heat flux flowing up to the evaporating surface, the pressure is assumed 
to be equal to the saturation pressure, and then the gas-dynamic problem with known blow-in 
intensity is solved and the distribution of the gas pressure and temperature of the evapora- 
tion surface T o is found. In the "kinetic" approach [3-5] the temperature of this surface is 
given and the pressure, gas velocity, and evaporation intensity are determined by the methods 
of the kinetic theory of gases. In the gas-dynamic limit (for small Knudsen numbers Kn) a 
relation of the Hertz-Knudsen type [6, 7], relating the flow rate with the temperature T o 
and gas pressure, is used; the pressure and flow rate are determined in the solution of the 
gas-dynamic problem. 

Both approaches are limited, since they do not take into account the conjugate nature 
of the problem: the intercoupling of the heat transport in solid walls, the flow of vapor, 
and the kinetics of evaporation. Indeed, both the temperature of the evaporating surface 
(which is given in the kinetic approach) and the heat flow to it (in the energy approach) 
depend in the general case on the characteristics of heat transfer in the solid walls as well 
as on the characteristics of the flow and of the evaporation. 

It is important to determine the region of applicability of these approximate approaches, 
clarify the necessity for using the conditions of nonequilibrium evaporation, and determine 
the region of "nonuniform" evaporation, when the redistribution of energy and the solution of 
the two-dimensional equation of heat conduction in the solid walls must be taken into account. 
The conjugate problem with uniform heat flow to the wall for low Reynolds' numbers of the 
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)~in (x) f~n (x) 

Fig. i. Diagram of evaporation 
from the channel. 

vapor flow Re is studied in [8]. In this work we analyze the formulations of the conjugate 

problem for arbitrary Re and qin(X). 

i. We shall study evaporation from the walls of a long flat slit, at whose output a 
converging nozzle is placed (the gap width 2h is much smaller than the length of the nozzle 
2L, S = hout/h ~ I). A constant pressure Pin is maintained on the outside. The solid walls 
have a finite thermal conductivity, the end surfaces are thermally insulated, and a heat flux 
qin(X) flows to the external surface (Fig. i). The flow is assumed to be viscous and sta- 

tionary. 

The gas-dynamic part of the problem is described by the Navier-Stokes equations for flows 
in narrow channels [9] (terms 0(6), 6 = h/L << i are dropped), and the thermal 
described by the equation of heat conduction in a solid: 

O (ou)/ax 4- o (or)lay = o, 

p (uOu/Ox + vOu/Oy) = - -  Op/Ox + pO~u/@L 

c)plOg = O, 

! pR (uaTlax + vaTlau) = %a~TlaY - p (aulax + avlau) 4- ~ (a.lau)L 
2 

~,r (a@lax ~ + o @ l a / )  = o 

wi th  t he  c o r r e s p o n d i n g  boundary c o n d i t i o n s  and c o n j u g a t i o n  c o n d i t i o n s :  

g = O  J = - p v = o ~ ( P ~ - - P ) / V 2 ~ R T  ; 

u = o r = ~, -- x r a ~ / a y  = JQ; 

x = O a7"/ox = o, .gp/Ox = O, u = o, OT/Ox = O; 

y = - - l  --kr0T/0y=qin(X); 

g = h Ou/Og = O, v = O, aTIOy = O; 

part is 

(1) 
(2) 
(3) 
(4) 
(5) 

(6) 

(7) 

(8) 

(9) 

(lO) 

x = L  OT/Ox=0, p = P o u t .  (11) 

Here a i s  a d i m e n s i o n l e s s  c o e f f i c i e n t  of  o r d e r  u n i t y  [6,  7] ;  Pe = Pe exp (-Q/RT) i s  t he  
s a t u r a t e d  vapor  p r e s s u r e ;  and R i s  t he  i n d i v i d u a l  gas c o n s t a n t .  

The r a t e  of  s l i p p i n g  and t he  jump in the  t e m p e r a t u r e  between t he  gas and t he  wal l  can 
be n e g l e c t e d  f o r  low Knudsen numbers,  s i n c e  t h e y  do no t  i n t r o d u c e  new q u a l i t a t i v e  e f f e c t s ,  
but merely give small corrections. The heat flow in the gas is also neglected compared with 
the energy expended on evaporation, and the additional term in the condition of the Hertz- 
Knudsen type is also neglected [7]. 

2. The gradient of the pressure arising with the acceleration of the vapor and over- 
coming of friction, owing to the kinetic relation (6), will generally speaking give rise to 
a longitudinal temperature gradient in the walls of the slit. For this reason a longitudinal 
heat flow, which can change the intensity of evaporation, appears. It is important to take 
into account the nonequilibrium nature of the evaporation in the case when the longitudinal 
temperature variation (associated with Ape)cannot be determined solely based on the pressure 
differential Ap. 

We shall examine the conditions under which the redistribution of energy in the solid 
walls and the nonequilibrium nature of the evaporation must be taken into account, and we 
shall classify the possible simple formulations of the problem. 
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Integrating the equation of heat conduction (5) across the slit and taking into account 
the boundary conditions (7) and (9) we obtain 

2 ^ o. JQ ~ q + l~,T (0 T/Ox )av. 

From here we obtain an estimate of the change in the flow rate along the slit b J: 

( Aql) 
A J Q ~ A q +  ~ AT0+ kr ) ~ A q ( 1 - I - P 2 ) + P q ~ '  (12) 

where Aq i s  t h e  change in  t he  h e a t  f l u x  f lowing  in ;  ~ = s << 1; qx = XTAT0/L i s  t he  l o n g i -  
t u d i n a l  h e a t  f l u x ,  c r e a t e d  by t h e  d i f f e r e n t i a l  of  t he  t e m p e r a t u r e  of  t he  e v a p o r a t i n g  s u r f a c e  
AT0. 

We i n t r o d u c e  a q u a n t i t y  which i s  equa l  to  t h e  d i f f e r e n c e  of  t he  s a t u r a t i o n  and vapor  
p r e s s u r e s :  ~ - P e -  P" From (12) and ( 6 ) ,  n e g l e c t i n g  terms O(~2),  we have 

An _ AJ Aq ? ~  q~ 

J q q 

Taking into account the fact that AT --- Ape -- Ap while Ape = peQbT0/T, from here we obtain 

Ap~ 1 4- r Aq/q 
Ap 1 + (n/Ap~) ~qx/q 

I n t r o d u c i n g  t he  d i m e n s i o n l e s s  p a r a m e t e r s  H~ ~ ~/Ap and Hp ~ (Ape/Ap)q/qx ~, we w r i t e  

Ap~ ! + H~Aq/q 
Ap 1 + H~/H v (13) 

~q~ = 1 l+HnAq/q  (14) 
q Hv 1 + H~/Hp 

As a n a l y s i s  shows, t h i s  i s  t he  most c o n v e n i e n t  c h o i c e  of  pa r ame te r s  f o r  t he  c o n d i t i o n s  
of  t he  g iven  m u l t i p a r a m e t e r  problem ( s ee  Sec. 3) .  

The redistribution of energy in the solid walls is significant for determining the flow 
rate, when 

pq~/q > 1. (15) 

When (15) h o l d s ,  g e n e r a l l y  speak ing ,  i t  i s  n e c e s s a r y  to  s o l v e  t he  t w o - d i m e n s i o n a l  h e a t  conduc- 
t i o n  e q u a t i o n  ( 5 ) .  In so doing ,  t he  s i z e  of  t he  r e g i o n  of  "nonuni form" e v a p o r a t i o n  and t he  
f u n c t i o n  J ( x )  w i l l  depend on qx/q  and t he  t h i c k n e s s  of  t he  s o l i d  wa l l s  s 

The n o n e q u i l i b r i u m  n a t u r e  of  t he  e v a p o r a t i o n  must be t aken  i n t o  accoun t  when (Ape/A p - 
l )  ~ l .  

For c l a r i t y ,  t he  p o s s i b l e  f o r m u l a t i o n s  of  the  problem wi th  Aq/q = O(1) a r e  shown in t he  
diagram of Fig. 2. Here the following regions are separated: Hp >> H~, Hp >> i [region I, 
in which the subregions a) H~ << i, b) H~ ~ i, and c) H~ >> i are labeled]; Hp ~ H~ >> i 
(region II); Hp << H~, H~ >> i (region III); Hp<< H~, H~ ~ i (region IV); Hp ~ H~ ~ i (region 
V); Hp >> H~, Hp ~ i (region (VI). In regions I and VI the condition of equilibrium evapora- 
tion p = Pe can be used to determine the flow rate; in regions II-VI the redistribution of 
energy in the solid walls is important. 

We shall examine each region in greater detail. 

In region I the transverse heat flow, according to (14), is weak, as a result of which 
the flow rate can be found without solving the equation of heat conduction in the solid: 
J(x) = qin(x)/Q. The gas-dynamic problem (1)-(4) with the known intensity of blow-in is 
solved independently of the thermal problem, as a result of which p(x) is determined. In 
the region la, according to (13), pe(X) = p(x) and the temperature of the wall is calculated 
without the use of the kinetic relation (6). In the regions Ib and Ic the change in the tem- 
perature cannot be found without (6), and in addition in the region Ic p = const (this follows 
from the definition of H~). The approach of [i, 2] is valid in the region la. 

In the region II the pressure is also constant, but in order to calculate the flow rate 
the two-dimensional heat conduction equation (5) with the condition (6) with p = const must 
be solved. In the region III, according to (13) and the definition of H~, Pe = const and 

96 



p = const. Therefore the evaporation surface T o and, according to (6), the flow rate J are 
constant. The flow rate is determined from the relation 

L 

7 = (LQ) -~ .! ~n (x) dx. 
0 

The k i n e t i c  approach i s  v a l i d  in r e g i o n  IV ( l i k e  in I I I ,  where i t  r educes  to  t he  degener -  
a t e  case). Here T O = const for arbitrary qin(X), and the gas-dynamic problem (i)-(4) with 
conditions of the Hertz-Kundsen type (6) with Pe = const must be solved to in p(x) and J(x). 

In the region V the problem in its general formulation (I)-(ii) must be solved. The 
temperature of the evaporation surface changes along x by an amount O(Q-1~/p) << 1 and the 
pressure changes by an amount Ap/p ~ ~/p << i, but in order to determine the flow rate the 
heat conduction equation must be solved using (6). 

In the region VI the kinetic relation reduces to pc(X) = p(x), and the solution is in- 
dependent of the form of the kinetic model. To determine the flow rate, pressure, and tem- 
perature T0(x), however, the heat (5) and gas-dynamic (1)-(4) problems must be solved simul- 
taneously under the condition p(x) = pe(X). The pressure drops need not be small. 

In the limits H~, Hp + O, according to (14), qx § ~, i.e., strong nonuniformity is ob- 
served and the estimates presented above are not valid. 

3. To determine the parameters Hv and Hp we shall estimate the characteristic values of 
the velocity and the pressure and its differentials. 

The pressure at the outlet from the gap can be evaluated from the problem of nonviscous 
adiabatic efflux of gas from a nozzle [i0]. Choosing for the stagnation parameters of the 
flow the saturation pressure and the temperature at the inlet into the nozzle, we express the 
flow rate in terms of these parameters: 

~+i 

2 

, 

~.-}- 1 

x-I-I ~ / /  •  

• (__p]  2,. t p 

O, 

The flow rate is determined by the energy introduced, 

Pin ( P ( Pcr' 

P ~ Pin" 
L 

9Uav = i'qin(X) dxthQ , whence 

Po~t" max {an, (q/Q) (s6)-~ VDT  }, (16) 
Mo~t~ S rain { 1, (q/Q) (86)-~ ~PR-Y-/~n }. 

From the equation of continuity (i) we obtain v ~ u6; thus the evaporation in the chan- 
nel will be "weak," Mevap = ~/p ~ $6 << 1 (excluding, possibly, the end regions) irrespective 
of the value of the heat inflow. However, the longitudinal velocity u for low values of Pin 
and large values of qin can be significant compared with the velocity of sound. 

Estimating the pressure differential along the gap, from the momentum equation (2) we 
obtain: 

Ap OuAu + ~AuL _ O ( M ~ ) ( l ~ _ O ( l l ~ e ) )  , 
p pRT pRTh ~ 

Re - -  puh2 ~_ 9vh ~_ qh (17) 
~L ~ Q~ 

where Re is the Reynolds number for the flows in the long channels (flow of the Hill-Shaw 
type [ii]), which is determined in this case by the width of the slit, the heat inflow, the 
heat of evaporation, and the viscosity of the gas. The pressure drops may not be small for 
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InH~ E=c0nst, To:c0nst ' / 
i p:cons'c / 

/ p:const ; 

I / ..J-'V/ b 

0 In@ 

Fig. 2. Diagram of possible formulations of the 
problem in the leading order approximation: GD) 
the gas-dynamic problem (1)-(4); T) thermal problem 
(5); GK) conditions for nonequilibrium evaporation 
(6). 

M = O(i) or even for M2/Re ~ i. At the same time the pressure drop across the slit Ayp/p = 
<< l [9]. 

Using these estimates for Ap/p and ~/p and also the relations APe = QAT0/T and qx = 
XTAT0/L, from the definitions of H~ and Hp we obtain: 

H~=6M-lmin{Re, 1}, H,:M-2(QqL/LrT)~ -1 rain{Re, I}, 
where M is given by the relation (16) and Re is given by (17). 

Thus the values of the parameters H~ and Hp, determining the evaporation regimes, depend 
on the flow regime: the numbers M and Re, the geometric parameters 6 = h/L and $ = r/L, and the 
complex QqL/XTT. 

The condition for redistribution of energy in the solid (15) assumes the form 

%rT max{ML M~/'Re, M6Aq/q} ~.1, (18) 
QLq 1 + 0 (~M6%r|T/QqL) 

while the necessary condition for using the conditions of nonequilibrium evaporation is 

~M6 %TT q_ A___qq 6 rain{Re, 1}~ 1 
QqL q M 

We rewrite the last relation for qin = const in the form 

~"' ~---6"kr'T'~ ~- %TTRp Ja ~ ~ , (19) 

where Knudsen's number Kn : a p/ph is determined based on the pressure at the inlet into the 
nozzle. Thus the kinetic relation (6) for the intensity of evaporation in the problem under 
study must be used for materials with high thermal conductivity in the solid phase with not 
too small numbers Kn and quite short slits. 

For Aq/q ~ i, in addition to (19), the inequality M ~ 6min {Re, i}, i.e., the condition 
that the flow be slow, must hold. When these conditions are satisfied the kinetic approach 
is valid [3]. 

We shall now examine in greater detail the condition under which the flow of heat in 
the solid can be neglected (18) (the condition that evaporation is nonuniform). For suf- 
ficiently small values of XT the evaporation will always be uniform, and in addition for 
H~ << i (quite large pressure drops along the slit) the energy approach is valid. 

As M decreases (or Re increases) the nonuniformity decreases (owing to the decrease in 
the pressure drop and therefore in AxT). The nonuniformity also decreases as the slit length 
increases, T decreases, and the heat of evaporation increases. 
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We note that the arguments presented above refer to the case of "strong" nonuniformity, 
when the flow rate changes in the entire region. The local disturbance of the flow rate in 
the end region of the gap, where the gradients are largest, occurs under less rigid conditions 
[8]. 

NOTATION 

h, width of the channel; L, length of the channel; 6 = h/L, relative width of the channel; 
g, thickness of the walls; ~ = g/L, relative thickness of the walls; p, gas pressure; Pe, 
saturation pressure; ~ = Pe - P, pressure drop; T, temperature; To, temperature of the evapor- 
ation surface; Q, heat of evaporation; Q = Q/RT, dimensionless heat of evaporation; p, viscos- 
ity of the gas; %, thermal conductivity of the gas; %T, thermal conductivity of the solid phase; 
q, heat flux; J, mass flow rate~ a, velocity of sound; M, Mach's number; Re, Reynold's number; 
Kn, Knudsen number; and H~ and Hp, dimensionless complexes. 
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LIMITING SOLUTION OF A DIFFUSIONAL PROBLEM IN PRISMATIC TUBES 

A. I. Moshinskii UDC 532.72 

The limiting solution of the convective-diffusion equation is investigated in chan- 
nels close to the tube "axis," i.e., the line at which the liquid flow rate takes 
on a maximum value. 

The solution of heat- and mass-transfer problems in prismatic tubes, even when the tubes 
are linear, entails well-known difficulties when using the methods of mathematical physics 
[i]. In connection with this, approximate methods are widely used: numerical methods [2], 
variational and projectional methods [3], methods based on introducing an effective (Taylor) 
diffusion coefficient [4], and various modifications and improvements of these [5-7]. 

In the present work, small-perturbation theory is used to investigate a characteristic 
solution of the problem of impurity propagation in prismatic tubes at large Peclet numbers. 
The behavior of the impurity concentration around the tube axis is of interest here. The 
liquid is assumed to be Newtonian and the liquid flow to be laminar, although the individual 
assumptions of the theory and calculations may simply be extended to more complex cases. 

I. Plane Channel 

Suppose that the liquid is of sufficiently high viscosity that the liquid flow is sta- 
bilized over time and, at the same time, the diffusional process is unstable. The impurity- 
diffusion equation in this case takes the form 
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